Designing and Implementing a Data Science solution on Azure (DP-100)
- Seminar
- Präsenz / Virtual Classroom
- 6 Termine verfügbar
- 32 Unterrichtseinheiten
- Teilnahmebescheinigung
- Garantietermine vorhanden
Data Science mit Machine Learning Lösungen in der Azure CLoud.
Erwerben Sie die Kenntnisse über die Verwendung von Azure-Diensten zum Entwickeln, Trainieren und Bereitstellen von Lösungen für maschinelles Lernen. Der Kurs beginnt mit einem Überblick über Dienste, die Data Science unterstützen. Von dort aus konzentriert es sich auf die Verwendung von führendem Data Science-Dienst, dem Azure Machine Learning-Dienst, zur Automatisierung der DS-Pipeline. Nutzen
Zielgruppe
Anforderungen
Inhalte
Module 2: Visual Tools for Machine Learning
Module 3: Running Experiments and Training Models
Module 4: Working with Data
In this module, you will learn how to create and manage datastores and datasets in an Azure Machine Learning workspace, and how to use them in model training experiments.
Module 5: Working with Compute
One of the key benefits of the cloud is the ability to leverage compute resources on demand, and use them to scale machine learning processes to an extent that would be infeasible on your own hardware. In this module, you'll learn how to manage experiment environments that ensure consistent runtime consistency for experiments, and how to create and use compute targets for experiment runs.
Module 6: Orchestrating Operations with Pipelines
Here you learn how to orchestrate these workloads as pipelines of connected steps. Pipelines are key to implementing an effective Machine Learning Operationalization (ML Ops) solution in Azure, so you'll explore how to define and run them in this module.
Module 7: Deploying and Consuming Models
Models are designed to help decision making through predictions, so they're only useful when deployed and available for an application to consume. In this module learn how to deploy models for real-time inferencing, and for batch inferencing.
Module 8: Training Optimal Models
In this module, you'll explore how you can use hyperparameter tuning and automated machine learning to take advantage of cloud-scale compute and find the best model for your data.
Module 9: Responsible Machine Learning
This module explores some considerations and techniques for applying responsible machine learning principles.
Module 10: Monitoring Models
After a model has been deployed, it's important to understand how the model is being used in production, and to detect any degradation in its effectiveness due to data drift. This module describes techniques for monitoring models and their data.
Hinweise